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TIME OPTIMAL CONTROL WITH 

AMPLITUDE AND RATE LIMITED 

CONTROLS* 

W. W. Schmaedeke'and D. L. Russell * -f 
ABSTRACT -2m3Ij 

Necessary conditions leading to a method for the determination 

of bounded control amplitude and amplitude rate time optimal 

ccntrol trajectories by backing out of the origin are developed. 

The backing out procedure requires choosing the response time, 

the unaugmented system adjoint vector at the response time, the 

rate limited control variable amplitudes at the response time, and 

the rate limited control variable amplitudes at the initial time. 

A set of consistency conditions on the control variables are then 

used to determine the allowable control variable trajectories from 

a finite set of possibilities. The state trajectories including 

the state at the initial condition can be determined in the 

usual manner from the control variable trajectories. L' 

INTRODUCTION 

It has long been recognized that the maximum principle of 

Pontryagin would have to be modified to allow for controls whose 

switching rates were finite, due either to inertial or other 

factors. 

The first insight into the form of the resulting theory was 

provided by Birch and Jackson in their 1959 paper, reference 
* Prepared under contract NASw-563 for the NASA 

+ Sr. Research Mathematician, Minneapolis-Honeywell Reg. Co. 
Minneapolis, Minnesota * Research Consultant 
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2 ,  although they were discussing qui te  a d i f f e r e n t .  problem. 

The f i r s t  discussion of t he  problem toge ther  w i t h  a set  of 

necessary conditions character iz ing the optimal con t ro l l e r s  was 

provided by Chang. Several  of  t he  r e s u l t s  i n  t h i s  paper were 

indicated by h i m  i n  reference 1. The proofs herein a r e  

rigorous however, whereas Chang's a r e  h e u r i s t i c .  The aspect of 

the  problem t h a t  i s  new i n  the  treatment here in  i s  the requirement I 

t h a t  solut ions of the  augmented ad jo in t  equations be d i f f e r e n t i a b l e  

on the whole i n t e r v a l  (0,T) instead of merely piecewise d i f f e r e n t i a b l e  

I 

I 

on so cal led "pang" i n t e r v a l s .  It i s  t h i s  requlrement which allows I 
I 

the  "pang" i n t e r v a l s  t o  be located.  To be more s p e c i f i c ,  it I s  , 

shown t h a t  the  optimal cont ro l  i s  e i t h e r  a t  extreme amplitude o r  

extreme ve loc i ty .  The sub-intervals  of ( 0 , T )  over which t h i s  

behavior occurs can be determined i f  appropriate  i n i t i a l  and 

f l n a l  conditions a re  given. 

PRELIMINARIES 

Consider t h e  l i n e a r  d i f f e r e n t i a l  equation 

= A ( t ) x  + B ( t ) u  + c ( t )  (1) 

where A i s  an nxn matrix, B i s  an nxm matrix,  and c i s  an 

n-vector. The elements of A ,  B, and c a r e  bounded continuous 

functions of  time on an i n t e r v a l  I under considerat ion.  It 

i s  supposed t h a t  t he re  a r e  no cons t ra in ts  on the  phase var iab les  

x ( t )  other  than the  given i n i t i a l  point  and the t a r g e t ,  and t h a t  

the c,ontrols u ( t )  have components t h a t  a r e  bounded i n  amplitude 

and r a t e .  The c l a s s  of admissible cont ro ls  i s  defined a s  a l l  

vector funct ions u ( t )  defined on various subin terva ls  of I whose 
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components satisfy 

where k m. The functions ali(t), aZi(t), bli(t), and b2i(t) 

are bounded continuous functions with the further assumption 

that 

at all times at which the a's are differentiable (which is 

assumed to be almost everywhere). 

u1 By defining new controls vi for i = l,...,m with v1 = 

= uk, vk+, - - uk+l ,..., v = v2 = U2' 0 .  ,v 

variables zi for 1 = l,...,n + k with z1 = xl, . . . J ~  
= U1, ..., Z 'n+l 

and new phase 

= zn, n 

m 

= uk the system n+k 

= FZ + GV + h 

i s  obtained where 
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and where A i s  the  o r i g i n a l  system's nxn coe f f i c i en t  matrix, Bo 

is an nxk matrix whose k columns a r e  the  f irst  k columns of the 

o r ig ina l  control  coe f f i c i en t  matrix B, B1 i s  an nx (m-k) matrix 

whose columns a r e  the remaining (m-k) columns of B, and I k  I s  a 
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kxk i d e n t i t y  matrix, The zero matrices a r e  blocks of zeros of 

the appropriate  dimension t o  make F have dimension (n+k) x (n+k) 

and c) have dimension (n+k) x m; the number of zeros i n  h is k so 

that h is an (n+k)-vector. 

The system (4)  I s  now i n  a bounded phase setting, that is, 

i = l , . . . ,k  

( t h i s  i s  the bounded phase cons t r a in t ) ;  furthermore, the  bounds 

on the amplitude of the new control vector  v ( t )  a r e  given by 

bli v,(tj 5 bZi; i = I,...,~c 

alj 5 v , ( t )  j = k+l , . . . ,m  . 
NECESSARY CONDITIONS FOR O P T I M A L  CONTROLS 

For each t i m e  7 with [O,T] contained i n  I, the  s e t  of a l l  

admissible cont ro ls  on [O,s] together with the i r  corresponding 

responses i s  considered. The set o f  a t t a i n a b i l i t y  K(T) is t h e  

s e t  of a l l  points  X ( T )  i n  Rn which a r e  terminal po in ts  of  these  

response t r a j e c t o r i e s ,  i . e . ,  i f  x ( t )  is the  response t o  the  

cont ro l  u ( t )  defined on the in t e rva l  [O,T], then the point X ( T )  is 

t o  be included i n  the  set K(T). 

compact convex subset of Rn. 

a l l  non-empty compact subsets of  R" with the  dis tance d(C,,C,) 

between two such subsets  C1 and C2 defined t o  be t h e  infimum of 

a l l  numbers d such t h a t  C1 l i e s  i n  the d-neighborhood of C2 and 

C2 l i e s  i n  the  d-neighborhood of  C1, Z becomes a complete metric 

space. 

It can be shown t h a t  K(7) i s  a 

By considering the  co l l ec t ion  C of 

Now the  s e t  K(T) is a compact subset of Rn and belongs 
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t o  C; furthermore, K(z) i s  continuous i n  'cy ( i . e .  K(zl) and K(s2) 

a re  close i n  the  above metric sense if z1 and z2 a r e  c lose 

toge ther ) .  If x(0)  i s  not i n  the t a r g e t ,  then a s  z increases ,  

there  i s  a first time T a t  which the set  K(z) comes i n  contact 

w i t h  the t a rge t .  

point  i ( T )  on the  boundary of K ( T ) .  

Thus the optimal response $('E) has i t s  terminal  

Properties of cont ro ls  u ( t )  on an i n t e r v a l  EO,%] whose responses 

h i t  the boundary of K ( t , )  w i l l  be examined. To t h i s  end the  

following de f in i t i ons  a re  made: 

DEFINITION 1. The l i n e a r  cont ro l  process ( 4 )  subject  t o  (6)  and 

( 7 )  i s  considered. A n  admissible cont ro l  v ( t )  on the i n t e r v a l  

[O,T] i s  ca l led  an extremal control  $( t )  i n  case there exists a 

non-tr ivial  so lu t ion  $( t ) of the  ad j o i n t  equations* 

q = - F'q 

such tha t  

where the maximum i s  taken over a l l  admissible con t ro l l e r s  v ( s ) .  

LEMMA 1. A cont ro l  $(t) on [O,T] i s  extremal if and only i f  the 

corresponding response z ( t )  has i t s  terminal point $ ( T )  on the 

boundary of K(T) . 
PROOF: Assume ^v(t) i s  such t h a t  2 ( T )  l i e s  i n  the boundary of K ( T ) .  

I------------------------- * A prime on a vec tor  or matrix means t h e  transpose Of t h a t  
vector or matrix. 
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Then l e t  7~ be a support plane t o  K(T) a t  the point  $(T), and 

l e t  11 be an outward normal t o  K ( T )  a t  the  point  i(T). Then 

q1 [; T)  - z(T)] 0 (8 1 

f o r  any point  z(T) belonging t o  K(T), 

fundamental so lu t ion  of the homogeneous equation corresponding 

t o  (4 )  wi th  h(s,s) = I, the  (n+k) x (n+k) i d e n t i t y ,  and consider 

the  va r i a t ion  of parameters formula f o r  a so lu t ion  of (4) :  

Now l e t  h( t ,s)  be a 

T 
+ J A(T,O)A-l( s , O ) h (  s ) d s  e 

0 

Hence 

( 9 )  

Let + ( s )  be a p a r t i c u l a r  solut ion of  the  ad jo in t  equations by 

def ining 

Then 

0 LI O J  
A i . e . ,  v i s  an extremal cont ro l .  

The o ther  case namely, i f  G ( t )  i s  extremal, is proven by 

beginning w i t h  equation (11) and proceeding backwards through the  

proof of t he  first case.  T h i s  completes the  proof.  
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According to Lema 1, these extremal cont ro ls  a r e  candidates 

f o r  t h e  optimal controls  since previous remarks have establ ished 
t h a t  an optimal control  has a response whose terminal point 

l i e s  on the boundary of K(T).  

It w i l l  be convenient t o  decompose the  ad jo in t  vector  J / ’ ( s )  

where Q ( s )  i s  an n-vector and @(s) is a k-vector. Then (11) be- 

v ( s )  is decomposed by def ining 

where ? ( s )  is a k-vector whose components a r e  

v l ( s )  
z vl(s), ...,%( s )  e V k ( S ) ,  and where ~ ( s )  i s  an (m-k)-vector 

whose components a re  pl(s) Z U ~ + ~ ( S ) , . . . , C ~ -  ( 5 )  U m ( S ) ’  ( k )  
Also, f o r  l a t e r  use, %(s)  i s  defined a s  a k-vector whose 

‘c components a r e  zl(s) u l ( s ) ,  ..., u k ( s )  = u k ( s ) .  Then (13) 

may be wr i t ten  as 

T T 
1 @’(s)[$(s)-y(s)]ds + 1 8’(s)B1(s) [~(s ) -g(s ) ]ds  .cI 1, 0. 
0 0 

It i s  now possible to r e f ine  Lemma 1 as  follows: 

LEMMA 2. 

k components (represented by v ( t ) )  s a t i s f y  

An extremal cont ro l  $( t )  must be such t h a t  its first  
LL 

t h  f o r  i = l , . . . , k ,  and f o r  a11Yi ( s )  which a r e  admissible i 

components of admissible cont ro ls  v ( s ) ;  furthermore, the remaining 
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or  equivalently 
m 

f o r  i = l,..., m-k, and f o r  a l l  admissible cont ro l  components 

- PROOF: Let  a p a r t i c u l a r  choice of v ( s )  be made a s  follows: 

v j ( s )  Z 6,(s) f o r  j f 1 and l e t  vi(s)  be merely admissible. 

$(a )  - v ( s )  has a t  most one non-zero component namely, 

$,(a) - vi(s) . 
i n  (15) vanishes and condition (16) of t he  lemma is establ ished.  

Condition ( l7a )  and i ts  equivalent condition ( l7b)  are proved 

i n  a similar manner. 

Then 

With this choice fo r  v ( s ) ,  the second i n t e g r a l  

Returning t o  equation (8) q is decomposed as follows: 

q /  = ( X ’ r 5 ’ )  (18) 

where X is  an n-vector and 5 is  a k-vector. 

d e f i n i t i o n  of %( t )  i n  the remarks following equation (14), z(T) 

According t o  the  

may be wr i t ten  as 

and (8) becomes 

X‘ [a,r) - x(T) ]  + 5’ [?(T)-€?(T)] 0. ( 

BY u t i l i z i n g  the va r i a t ion  of parameters representat ion of a 

3 )  

so lu t ion  of (1) (with E ( t , s  ) a9 a fundamental so lu t ion  mat r ixof  

the homogeneous equation where E ( s ,  8 )  is  the nxn iden t i ty .  
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t 
x ( t )  = E(t ,O)xo  + J’ E ( t , S )  B(s) u ( s ) d s  + 

0 

t 
+ J’ E ( t , s )  c ( s ) d s .  
0 

Now, noting that 

e ’ ( t )  = X‘( t )E( t ,S)  

and subs t i tu t ing  t h i s  and (20) i n t o  (19) the re  r e s u l t s  

1 5  T 
J 0’(s) B(s ) [d ( s ) -u ( s ) ]ds  + C [u(T) - c(T)] L 0, 
0 

where u ( t )  i s  any admissible cont ro l  vector  

Lemma 3 is establ ished i n  a manner i d e n t i c a l  t o  t h a t  used for 

Lemma 2. 

LEMMA 3. An extrema1 cont ro l  v ( s )  must be such t h a t  i t s  f irst  k 

components (represented by 3, (t ) , . . . ,u ( t  ) ) , when in tegra ted ,  

y ie ld  control  components u^,(t), . . . ,bk(t) which s a t i s f y  

A 
k 

rn 

f o r  i = 1, ..., k and a l l  admissible components u i ( t ) ;  furthermore, 

they must s a t i s f y  
m 

for i = k+l,.. . ,m and a l l  admissible components 

REMARK 1. It i s  observed that  the  e n t i r e  matrix 

U i ( t )  

B appears i n  the  

integrand whereas i n  Lemma 2 ,  the  matrix was B1, i . e . ,  the  last  

(m-k)  columns of B. Thus (24) is equivalent t o  (17) because 



for j = l,...,m-k. 

Some qualitative properties of extremal controls will now 

be established. These are also necessary conditions for an 

optimal control. 

phrased in terms of u(t) rather than v(t). 

These conditions will be more conveniently 

THEOREM 1. Let $( t )  be an extremal control for the system (1). 

If Gi(t) is at its upper llmlt during an interval of time, then 

the function [ d ( s )  B(s)Ii 1. 0 on that interval. 
is at its lower limit during an interval of time, then 

[€J/ (s)  B(s)Ii - < 0 on that interval. 

Also, if e,(t) 

n PROOF: Let ui(t) = a2i(t) on an interval [t,,t,] and suppose 

that [8 ' (T)  B(T)]~ < 0 at some point T in It,, t,]. 

there is an interval [ T ~ ,  T,], containing T in its interior, on 

which [8'(t) B(t)Ii < 0. 
chosen so that 

F3y continuity, 

Consider equation (23) with u,(t) 

Then from (23) {noting ui(T) - fii(T) = 0) 

7, 

But  the integrand is negative on the entire interval and this 

is a contradiction. The remainder of the theorem is proved in a 

similar manner. &.E .D. 

Now consider again the adjoint equations for (4): 

q / = -  * 
or, in terms of 8 and 9 
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O l r l  0 9  

By performing the indicated matrix multiplication the two sets 

of equations are obtained: 

( 3 0 )  
I ; = - A  e 

6 5= - B i 6  (31)  

Nof,ice that 8 corresponds to the adjoint vector of the original 

system (1) whereas 9, corresponding to the augmented coordinates 
of the adjoint vector, is a trivial linear system in that no 

components of 9 appear on the right sides. 

Given a fundamental solution E ( t ,  to) to equations ( 3 0 ) ,  

(with E(to, to) = nxn Identity) represent e(t) may be represented 

by 

e(t) = to) eo (32 1 
Then (31) yields 

t 
9(t) - @(to) = J -B~(s) E ( s ,  to) QOds ( 3 3 )  

In the following, a technique for utilizing 9(t) in the con- 

struction of optimal trajectories w i l l  be developed. 

DEFINITION 1. Let ui(t) be an admissible component of the control 

vector for (1) or ( h ) ,  and define an interval of type B as a 

maximal closed subinterval of the interval [O,T] whereon u,(t) 

is extremal, i.e., assumes maximum or minimum amplitude throughout 

the whole subinterval. 
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DEFINITION 2. An i n t e r v a l  of type P1 f o r  u i ( t )  is defined t o  be 

a maximal closed i n t e r v a l  i n  the i n t e r i o r  of which u i ( t )  is  not 

extreme valued, i .e . ,  ui assumes ne i ther  i t s  maximum nor i t s  

minimum amplitude a t  any point i n  the i n t e r i o r  of the i n t e r v a l .  

Note t h a t  i f  P1 f [O,T], then di is  extreme a t  one end ( o r  both) 

of P1. 

DEFINITION 3. A n  i n t e r v a l  of  type P2 f o r  u i ( t )  is defined t o  be 

a maximal subinterval  of  [O,T]whereon u i ( t )  is not extreme and 

whereon G i ( t )  is a t  one of i t s  extremes, but not both. 

REPIARK 2. The i n t e r v a l  [O,T] can be decomposed i n t o  non- 

overlapping fn t e rva l s  of type B o r  type P1 whose union i s  [O,T]. 

THEOREM 2. Le t  the system (1) be normal and consider an extrema1 

control  vector  $(t) f o r  (1). For each i = 1, ..., m it is the  
A case t h a t  on an i n t e r v a l  of type P1 f o r  G i ( t ) ,  e i t h e r  u i ( t )  is 

a t  i t s  maximum value o r  i t s  minimum value at  every t a t  which 

' d i ( t )  i s  d e f i n e d .  

PROOF :Let t belong t o  the  i n t e r i o r  of P1 and assume tha t  al(t) 

is  defined and is not extreme. 

zero on an i n t e r v a l  by normality, we may assume f u r t h e r  that t is 

such a point where [G'(s) B ( s ) I i  is  not zero. 

e l iminate  a s e t  of t i n t h e  i n t e r i o r  of P1 whose measure is zero) .  

By cont inui ty ,  [e'(s) B ( s ) I i  is of one sign on an i n t e r v a l  about 

the  pc in t  t under consideration. For def in i teness ,  assume 

[ e ' ( t )  B ( t ) I i  < 0. Then since Qi(t) is not extreme znd s ince ai(%) 
i s  not extreme, an admissible control u i ( s )  is constructed as  

Then, since [e'(s) B ( s ) l i  is not 

(This  would 

fdllows: Let M1 be a l i n e  through the  point (t ,  ai(t))  whose 



slope i s  b l i ( t ) .  (For s impl ic i ty ,  it i s  assumed t h a t  

bli(s) L 0 - < b2i(s) where both e q u a l i t i e s  do not hold 

simultaneously. Other cases would be t r ea t ed  s i m i l a r l y , )  For I I 

a given 6 >  0, l e t  m1(6) be a l i n e  through ( t ,  u i ( t ) )  whose I 

slope i s  equal t o  the  minimum of b2i(s) on t h e  i n t e r v a l  
I 

[ t ,  t + 61 and l e t  m2( 6) be a l i n e  through t h e  same point  whose 

slope i s  the  maximum of b l i ( s )  on the  i n t e r v a l  [t, t + 61. Now 

letGO1 > 0 be chosen so small t h a t  t he  l i n e  m1(FjO1) l i e s  e n t i r e l y  

between* the  curve u i ( s )  and the  l i n e  M1 i n  t he  i n t e r v a l  [ t , t  + fjO11 
and l e t  602 > 0 be chosen so small t h a t  t he  l i n e  rn2(602) l i e s  

between the curve ci(s) and the  l i n e  M2 i n  t he  i n t e r v a l  [ t ,  t + tjo2].  

Let 60 denote the  smaller of 501 and 

t h a t  [ e ' ( S )  B ( s ) l i  < 0 i n  [t, t + 601 and l e t  ml and m2 be the  

l i n e s  corresponding t o  60 ;  see Fig. 1. 

According t o  the  previous construction, t he re  i s  a segment S of 

the  ordinate a t  t + 60 which i s  cu t  out  by the  l i n e  ml and the  

curve u i ( s ) .  

then by cont inui ty ,  there  i s  a point P on the  segment S such t h a t  

A 

I 

I 

A 

and f u r t h e r  be small enough 

4 A Since u i ( t )  i s  not equal t o  i t s  minimum value a l i ( t j ,  

the  l i ne  L through P p a r a l l e l  t o  ml w i l l  i n t e r s e c t  t he  curve A u i ( s )  

a t  the point  R a t  a t i m e  T i n  ( t ,  t + 6 0 )  and such t h a t  it w i l l  

i n t e r sec t  the  l i n e  m2 a t  a point  Q a t  some time CJ f o r  which t h i s  

i n t e r sec t ion  i s  above the  height a l i (a ) .  Now define u i ( s )  t o  be 

equal $0 U i ( S )  for s 2 t ,  and s 2 T .  
A 

On the  i n t e r v a l  [ t ,  T ]  

- - - - - - - - - - - - - - - - - - -L-- - - - - - - -  * ml may coincide wi th  MI; s imi l a r ly  m2 may coincide wi th  M2. 
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A define u i ( s )  t o  be the  segment of m2 between the  point  ( t ,  u , ( t ) )  

and Q; and t o  be the  segment of L between Q and R. Thus u i ( s )  

i s  an admissible control  sa t i s fy ing  the  amplitude and the r a t e  

bounds either by construction o r  because it i s  equal t o  Gi(s) 

which i s  assumed admissible. 

Now equation (23) with the pa r t i cu la r  u i ( s )  j u s t  constructed 

i s  considered. It i s  seen t h a t  

7 [ O * ( S )  B ( s ) l i  [Gi(s) - u i ( s ) l d s  2 0 (34) 
t 

But [ O 1 ( s )  B ( s ) I i  < 0 i n  [t ,  71 while G1(s) - u i ( s )  > 0 i n  

( t ,  7). 

must be extreme. 

assumed t h a t  [ e t ( t )  B ( t ) l i  > 0. 

REMARK 3 .  It follows from theorem 2 t h a t  t he  i n t e r v a l  [0, T I  

i s  decomposable i n t o  subintervals  of type B o r  type PI which 

a re  nonoverlapping and whose union i s  [0, T I .  I n  other  words, the  

optimal control  i s  e i t h e r  a t  extreme amplitude or extreme ve loc i ty ,  

A 
T h i s  i s  a contradict ion and hence the  ve loc i ty  of u , ( t )  

The proof goes through i n  the  same way i f  i t  i s  

Q.E.D. 

whenever the  ve loc i ty  i s  defined. 

THEOREEM 3 .  Let  the  system (1) be normal and consider an extrema1 

cont ro l  vector  u ( t )  f o r  (1). For each i = 1, ..., m it i s  the 

case t h a t  i f  there  i s  an in t e rva l  of type P1 f o r  ui such t h a t  

a t  l e a s t  one of i t s  endpoints say t*, i s  i n  t h e  i n t e r i o r  of 

[0, T I ,  then f o r  a l l  t i n  the  P1 i n t e rva l  f o r  which u,( t )  i s  

defined: 

maximum value; (ii) @,(t) < @,(t*) implies that  ii(t) i s  a t  i t s  

A 

h 

(i) @,(t) > @,(t*) implies that  ^ui(t) i s  a t  i t s  



minimum value.  

PROOF : From Theorem 2 O i ( t )  i s  a t  one extreme or t he  o the r  i n  

P1 i n t e rva l s .  

P1 in t e rva l  under consideration i s  a poin t  t* i n t e r i o r  t o  (0, T) 

i t  may be assumed without loss of gene ra l i t y  (w.1.0.g.) t ha t  

t he  point t* i s  the  r i g h t  end of P1. 

assumed w.1.o.g. t h a t  ai(t*) i s  a minimum. 

i n  P1 a t  which g i ( t )  i s  defined and suppose t h a t  si(t) i s  g r e a t e r  

By hypothesis, s ince one of t h e  endpoints of  t he  

Furthermore, i t  i s  

Now l e t  t be a point  

than si(t*) but (ti(t) i s  minimum ( i . e . ,  b l i ( t ) ) .  

t he  d e t a i l s .  

u i ( s )  I s  chosen so t h a t  on [ t ,  t + 6 1  i t  has maximum s l o p , a n d . l i e s  

above ai(s) while i t  i s  p a r a l l e l  t o  Gi(s) from t + 6 t o  some 

Figure 2 suppl ies  

point  7 > t*, 

from T t o  T .  

(choose 6 so small t h a t  7 < T )  . Then l e t  A ui( s )  = ui( s )  

Now from the  construction of ui(s)  and from equations (23) 

t + 6  t* 

On [ t  + 6, t*] the  function $i(s) - ui (s )  has the  constant value, 

say - E .  Thus the midd le  i n t e g r a l  i s  
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Note that as 6 approaches zero, t h e  integral in (36) (ignoring 
the multiplicative factor E) approaches 

Choose 60 so small that for all 6 < 60 

5 r < / [ e l ( s )  B(s)Ii ds < 

t + 6  

Now the first integral in (35) can be made small on the order 
of as follows: since IQ,(s) - ui(s)l 5 K1 I s  - tl on [t, t + 61, 

An easier analysis applies to the last integral; namely 
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A s  a r e s u l t  of  (41) ,  (40) ,  (38) and (35) 

6* r [K1 K2 2 - - E  2 + K3 E ( T  - t*)]  1 0 .  

It i s  next shown t h a t  6 i s  bounded above by a constant times E .  

It i s  observed t h a t  ii i s  g rea t e r  than $i on [ t ,  t + 61, hence 

t h e i r  difference i s  not zero on [ t ,  t + 61. L e t  the  minlmurn of 

t h i s  difference be denoted by c1 > 0, then 

o r  

t 

= E  

Thus c1 6 <, E or 6 5 c2 E where c2 > 0.  

( 4 2 )  y i e l d s  

Applying t h i s  r e s u l t  to 

K 1 2 2  K C 2 c 2 - $ ~ + K  3 E ( T - ~ * ) ? O  (45) 

o r  

r E (K1 K2 C z  E + K ( T  - t*) - 5)  >, 0 .  3 
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But (46) i s  a contradict ion because f o r  6 s u f f i c i e n t l y  small, 

E and '1: - t* can be made a r b i t r a r i l y  small which means the 

quant i ty  i n  parantheaes i s  negative. Thus it  has been shown t h a t  

when # ( t )  > #,(t*) then h i ( t )  i s  maximum (where i t  i s  def ined) .  

A s imi l a r  proof w i l l  show t h a t  cbi(t) < $,(t*) implies o i ( t )  i s  

minimum. 

i 

REMARK 4. Note t h a t  i n t e r v a l s  of type P2 coincide w i t h  i n t e rva l s  

whereon the  s ign of #,(t)  - @,(t*) i s  constant f o r  appropriately 

chosen points  t*. It w i l l  be shown l a t e r  t h a t  there  a re  only a 

f i n i t e  number of these points  t* f o r  a given @,(t )  and t h a t  it i s  

p".d.d&--- n n ~ q ' h 1 -  i n  these c m e s  where ai(t> i s  given e t  t h e  fins1 t i x e  8s 

well a s  the i n i t i a l  t i m e ,  t o  construct t he  family of extremal 

cont ro ls .  

THEOREM 4 . Let the system (1) be normal and consider an extremal 

cont ro l  vector  o(t) f o r  ( 1 ) .  

case t h a t  i f  the e n t i r e  i n t e r v a l  [O,T] (where T i s  the  minimal time 

of response) i s  of type PI f o r  u i ( t ) ,  then the re  exists a constant 

For each i = 1, . .., m it i s  the 

A 

ci such t h a t  i f  # , ( t )  - ci > 0 then ai(t)  i s  a t  i t s  maximum value 

and if G i ( t )  - ci < 0 then G i ( t )  i s  a t  i t s  minimum value (assuming 

t h a t  B i ( t )  i s  defined a t  t )  If there  a r e  a t  l e a s t  two i n t e r v a l s  

of type P2 contained i n  the  in t e rva l  of type Ply then the value of 

t he  constant ci i s  equal t o  @i evaluated a t  any of  the  i n t e r i o r  

endpoints of  the  type P2 i n t e rva l s .  

PROOF : 

CASE I: 

is t r i v i a l l y  t r u e  a s  the constant ci i n  t h i s  case may be chosen to 

! 
I 

If the  whole i n t e r v a l  [O,T] i s  of type P2 the  theorem 
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be the minimum o r  the maximum of t h e  funct ion q i ( t )  on [O,T] 

depending on whether bi i s  maximum o r  minimum. 

CASE 11: If there  a re  a t  l e a s t  two i n t e r v a l s  of type P contained 

i n  PI then l e t  t* be an i n t e r i o r  endpoint of a P2 In t e rva l .  

Consider the  case where &,(t) i s  minimum t o  the  l e f t  of t* and 

2 

maximum t o  t h e  r i g h t  of t* ( the  o the r  case with the  maximum and 

minimum reversed would be t r ea t ed  s i m i l a r l y ) .  

i n t e r i o r  point of [O,T] which i s  not the  endpoint of  an i n t e r v a l  

of type P 2 "  Assume t h a t  $ ( t ' )  - $(t*) > 0 but t h a t  G i ( t P )  is a t  

i t s  minimum, Let i t  be supposed t h a t  t '  < t*. Then construct  

u i ( t )  on .[O,T] a s  follows: 

6 > 0 so small t h a t  i f  u i ( t )  has maximum ve loc i ty  on [ t t ,  t 

L e t  t '  be any 

Let u i ( t )  = Si( t )  for t 5 t ; choose 

+ 61,  
A i s  p a r a l l e l  t o  u i ( t )  on [ t '  + 6, t* ] ,  and has minimum slope for 

a su i tab le  time durat ion t o  the  r i g h t  of t*, then the curve u i ( t )  

w i l l  i n t e r sec t  t h e  curve u i ( t )  a t  some point  T t o  the r i g h t  of 

t*, 

4 

A 
(This  choice i s  possible  because the  slope of  u i ( t )  i s  

A maximum t o  the r i g h t  of t*). F ina l ly ,  l e t  u i ( t )  = u i ( t )  on [T,T].  

From here on, one proceeds exact ly  as i n  the proof of theorem 3 

beginning wi th  equation (35). 

A METHOD FOR COMPUTATION OF EXTREMAL 
TRAJECTORIES FOR AMPLITUDE AND RATE 

LIMITED CONTROLS 

The foregoing theorems w i l l  now be given a more usefu l  i n t e r p r e t a t i o n ,  

Since the  case where aly a2, bli, bZi, i = 1, ..+ k a re  constant 
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i s  of p a r t i c u l a r  i n t e r e s t ,  a s  each condition on extremal 

t r a j e c t o r i e s  i s  

be given. Each 

s t a t ed  i t s  spec ia l iza t ion  t o  t h i s  case w i l l  a l s o  

i n t e r v a l  P1 of type P1 has a unique decomposition 

P1 = P,,U P u ... u P 
2, (47 1 

i n t o  i n t e r v a l s  P2 

prec ise ly  one point ,  p = 1, 2, ..., r-1. 
of type P2 where P2 fI P2 cons i s t s  of 

P P P+1 
The ba r  ind ica tes  

topological  c losure.  

cont ro l  u corresponding t o  the function @. 
l e t  PI be an i n t e r v a l  of type P, - for u 3 .  & 

corresponding t o  the  i n t e r v a l  P1there i s  a constant ci such t h a t  

the  subintervals  P2 of P1 coincide w i t h  those subintervals  of P1 

whereon s ign (@,( t )  - ci) i s  constant. 

Let Gi be t he  i t h  component of the optimal 
A I n  a l l  t h a t  follows 

A Theorems 3 and 4 show t h a t  

P 
Let 

Then 

a r e  considered. 

CASE I: 

q1(.r,) and Ci('r2) a r e  both  extremal. 

(P2 ) i s  s e t  equal t o  the  length of P2 and severa l  cases 
P P 

Let T ~ ,  T~ be the endpoints of P1. 

T ~ ,  T~ both belong t o  (0 ,T) .  Then it i s  c l e a r  t h a t  

I n  f a c t  

i f  sgn (P2 ) = -1 
1 

1 
i f  sgn (p2 ) = +I 

i f  sgn (P ) = +I 

if sgn (P2 ) = -1 
h 2r 

r 

(49) 
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CASE 11: 

-cl E (0, T) 49(a) holds, if 'r2 E (0,T) 49(b) holds. 

Either T~ o r  T ~ ,  but not both belong to'(0,T). Then if 

In each case 

the value of Qi at the other endpoint, i.e., either Qi(0) o r  oi(T) 

must be specified in some other manner. 

CASE 111: T~ = 0, T~ = T. 

specified, neither 49(a) nor 49(b) hold. 

It is possible to consider problems wherein neither Bi(O) nor 

;\Ui(T) are specified. 

below is not immediately applicable. 

the so-called interception problem, 

at the end of this paper. 

Then both Gi(0) and Qi(T) must be 

In this case the procedure to be described 

This situation arises in 

A remark on this will be made 

The values which Qi(t) assumes at T~ and 7 

conditions merely by applying the fundamental theorem of  

calculus for absolutely continuous functions. 

CONDITION 1 

lead to the following 2 

p3sgn(p2 ) = +1 p'3 sgn(P2 ) = -1 
P P 

If the bounds on the control velocity are constant then 

CONDITION la 
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The requirement t h a t  u,(t)  s h a l l  not achieve an extreme value 

i n  the i n t e r i o r  of P1 leads  t o  

CONDITION 2 

void)  

For each u such t h a t  1 < u < r ( t h i s  set could be 

p 3 e ~ n  ( P  ) = +I 
P 2 

where T~~ i s  the r i g h t  endpoint of t he  i n t e r v a l  P2. 

i nequa l i t i e s  ( 3 )  enable t h i s  t e s t i n g  procedure t o  be r e s t r i c t e d  

t o  poin ts  T ~ ~ .  

constant  

CONDITION 2a 

The 

Again i f  the  bounds on the  cont ro l  ve loc i ty  a r e  

+ b2 i  

P 

P 

bli 



D E F I N I T I O N  h .  Subintervals of [O,T] on which any cont ro l  u i ( t )  

may be defined s o  t h a t  Conditions 1 and 2 above a re  s a t i s f i e d w i t h  

$-(t) replaced by u i ( t ) ,  i i ( t )  = b 2 i ( t )  if sgn P2 

u i ( t )  = b l i ( t )  if sgn P2 
P 

Thus every in t e rva l  of type P1 i s  a l s o  of  type P 

= +1, 
P 

3' . = -1, are ca l led  i n t e r v a l s  of type P 

by Theorems 3, 4. 3 
The converse need not hold s ince there  may be no extension of 

ul('r) from the  given i n t e r v a l  Of type P 

[O,T] as  an extremal con t ro l l e r .  

i n t o  the  e n t i r e  i n t e r v a l  3 

DEFINITION 5 .  

types B and P i s  ca l led  acceptable i f  t he  r e su l t i ng  cont ro l  

u . . ( t )  Is continuous and s a t i s f i e s  the  preceding theorems on extremal 

A decomposition o f  I = [O,T] i n t o  subintervals  o f  

3 
I 

I 

cont ro l le rs .  The i n t e r v a l s  of type P then become i n t e r v a l s  of type 
I 3 

p1 fo r  u i ( t ) .  

The following theorem i s  of  primary importance i n  es tab l i sh ing  a I 

Drocedure for computing extremal con t ro l l e r s .  

TIIEOFBN 5. Assume t h a t  ( O ' B ) i ( t )  has a t  most f i n i t e l y  many zeroes 

on [O,T] and the functions a l i ( t )  and aZi ( t )  a r e  constants .  Then 

3' there  a re  a t  most f i n i t e l y  many poss ib l e - in t e rva l s  of type P 

provlded ui(0) and ui(T) a r e  specif ied i n  advance. 

PROOF: For a l i n e a r  d i f f e r e n t i a l  system the  i n t e r v a l  [O,T] may 

be divided i n t o  f i n i t e l y  many subintervals i n  which $,(t) i s  

monotone. To prove t h i s ,  note t h a t  the  negation implies t h a t  

( O I B ) I ( t )  has i n f i n i t e l y  many zeroes i n  [O,T], contrary t o  

assumption. 

cons is t s  of f i n i t e l y  many functions t,($,), ..., ts($i), each a 

Thus the  inverse function t(Qi) of the  function @,(t) 
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monotone function defined on some subinternal  of 

G i ( t ) ]  and ul < a2 implies that  t (Gi) < t (Gi) KT0 ,T 1 ~ E : [ O , T ]  Ol u2 G , ( t )  Y fmx 

W.1.o.g. it may be assumed t h a t  to(@l) i s  decreasing f o r  odd u 

and increasing f o r  even a.(Figs. 3 and 4 . )  

handled s imi la r ly .  

The domain of d e f i n i t i o n  of each tU(Gi) i s  extended t o  a l l  of  

by setting ta(@i) equal t o  tO(Gi* )  KT0 ,T ]Gi (t  ) t c  [ 0 ,T 

where Gi* i s  the c loses t  point  t o  9, where t a ( G i * )  i s  already 

defined (Fig.  5 ) .  

The o ther  case i s  

L e t  to( @,)=O, ts+l( Gi) G T. 

3 max 
(t ) 

For each of the  f i n i t e l y  many pairs of indices  

(@. is r le f lned by 
< i 

Ul’ a n y  0 <, 6, < a, - s + 1J g 
O2 

J. L L 

where 

b 2 i ( t )  i f  u i s  odd 

b l i ( t )  i f  u i s  even 
(51) 

5 a2 

p,(t) = 

Then it i s  easy to see t h a t  each gi 

decreasing funct ion of @i. 
(Gi) i s  a monotone 

( I f  t , (Gi )  were increasing f o r  d odd, 

decreasing f o r  a even, then g (Gi)  would s t i l l  be a monotone 
5 ,2 

decreasing function. ) 

It i s  c l e a r  by comparison of ( 5 0 )  with Condition 1 t h a t  an i n t e r n a l  

of type P 3 can occur only when there e x i s t s  a p a i r  alJ a2 and a 

value Gi such tha t  
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where u i ( t )  i s  the cont ro l  which must be defined on the  i n t e r v a l  

according t o  the  d e f i n i t i o n  of an i n t e r v a l  o f  type P A number 

of cases a re  now considered: 
3' 

I f  u1 = 0, u2 = s + 1, then we required i n  the  hypotheses of t h i s  

theorem t h a t  ui(0) and ui(T) be fixed. Thus u i ( t  ( @ i ) )  - u 
a2 

i s  a constant known beforehand. 

I f  u1 = 0 ,  u2 a r b i t r a r y  > 0 then u (t  

value known beforehand while u ( t  

( Q , ) )  i s  f ixed a t  a constant 
5 

(Q,)) = a2i(ta2(@i)) o r  
O2 

ali ( t  a2 (q* 
I f  c2 = s + 1 whi l e  al i s  a r b i t r a r y  < s + 1 then ui( t  

f ixed  a t  a constant value known beforehand while u ( t  

(@, ) )  i s  

(@, ) )  = 
u2 

5 
a ( t  (@, I )  o r  a J t  ( @ & *  

O2 2 i  al 

If 0 < u1 < a2 < s + 1 then u ( t  

the  four functions agi(tu2(Gi)) - ayi(tal(Qi)),  6 = 1, 2 ,  y = 1, 2.  

( G i ) )  - u ( t  ( Q i ) )  i s  one of  
*2 

( t )  were constants ,  a 2 i  Thus, since i t  was assumed the  funct ions a l i ( t ) ,  

it has been shown t h a t  there a re  a t  most f i n i t e l y  many values which 

ui(t,(@,)) - ui ( ta , (Qi) )  may assume f o r  each al, a2. Since the re  
i (Q3) and each of them i s  monotone, a r e  f i n i t e l y  many functions g,, a, 

c I 

I C  
there are but f i n i t e l y  many instances wherein equation (52) may 

hold. T h i s  completes t he  proof of the theorem. 

REMARK 5.  

but vary with time, the f i n i t e l y  many values  which we have shown 

I n  the case where a2i( t )  and a l i ( t )  a r e  not constant 
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in the proof of the theorem may be equal to ui(t ((Pi)) - ui(tu, (@,)) a, 

L I 

must be replaced by the finitely many functions ui(t 

u(t ((Pi)) themselves. Then the conclusion of the theorem remains 
(G,)) - 

u2 
(3, 

valid if for each ul, U2 the function g ($51 - (UJt Mi)) - 5 u2 u2 ($,)) has but finitely many zeroes on its domain of Ui(tU, 
I 

definition. It is difficult to give a reasonably general sufficient 

condition under which this holds sothe restriction to the case 

where aZi(t) and ali(t) are constant was made. 

likelihood is very small that any of these functions would have 

Clearly the 

infinitely many zeroes in any given application, Thus it is 

fairly safe to assume that there are but finitely many P intervals 

even if ali(t) and aZi(t) are time-varying but it should be kept 

in mind that this has not been established and it may be possible 

t o  construct pathological f'unctions a2i(t), all (t) such that 

this would not be true. 

3 

RENARK 6. Note that the theorem also shows a method f o r  finding 

the intervals of type P since the functions g (Oi) and the 3 6, % I C  

constants (or functions u (@,)) are readily 
determined. An acceptable decomposition of [O,T] into intervals 

of types B and P Thus after having found all possible intervals 

of type P (and the previous theorem assures us that in many cases 

this can be done), it remains only to find all acceptable 

3 '  

3 

decompositions of [O,T], and hence all possible controls ui(t) 

which satisfy the first fou r  theorems. There being only finitely 
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many of these the  cont ro l  C i ( t )  which s a t i s f i e s  inequal i ty  (11) 

can eas i ly  be found. 

and or ui(T) then these values could be varied and the above r e s u l t s  

applied t o  each choice of those values t o  determine the  bes t  ( i n  

the  sense of (3-1)) set  of values f o r  ui(0)  and o r  ui(T).  

A short  example i l l u s t r a t i n g  the  use o f  t he  above r e s u l t s  i s  now 

If no values a re  given beforehand f o r  ui(0) 

given. 

AN EXAMPLE TO ILLUSTRATE THE 
CONSTRUCTION OF AN EXTIiEMAL CONTROL 

L e t  the time i n t e r v a l  be [0 ,2]  and ( e o  B ) i ( t )  = - 2 cos (- 57T t ) .  
2 2 

Then ?i(t)  = s i n  (- 57r t ) .  

Require A ui(0)  = 0, A ui(2) = 0. The extrema1 cont ro l  Qi(t)  on [0,2]  

Suppose t h a t  a2i = 1, ali = -1, 2 

w i l l  be constructed.  

spec ia l  t o  the  constants all, aliy b 2 i  

Its re la t ionship  t o  the  immediately preceding discussion should 

be c l ea rg  a s  w e l l  a s  general izat ions t o  d i f f e r e n t  constant bounds. 

The method used w i l l  be graphic and w i l l  be 

bli i n  t h i s  problem, 

An in t e rva l  of type P 

leve l  l i n e  L through the  graph of  s i n  (F t )  so t h a t  the  end- 

points of L l i e  on the graph of s i n  (? t )  o r  else meet the  l i n e s  

t = 0 o r  t = 2 and s a t i s f i e s  the following requirements: 

w i t h  Conditions 1 and 2 above.) 

occurs whenever it i s  possible  t o  draw a 3 

(Compare 

1. If the  endpoints of L a r e  i n  (0 ,2)  then the  sum S of 

the lengths o f  those segments of  L ly ing  below s i n  (8 t )  minus 

the  sum of the lengths of  those segments of  L ly ing  above s i n  

(rt) must be 2, -2, o r  0. 

the l e f t  endpoints of L and Ll coincide then, ( a )  If the first 

segment of L *  l i e s  below s i n  (8 t )  the  sum S' of the lengths 

57r If L f  i s  any segment of L such t h a t  
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of those segments of L '  lying below sin (F t) minus the sum 

the lengths of those segments of L1 lying above sin (g t) must be 
<2 and >O, If the first segment of L! lies above sin (F t) 
then the corresponding quantity must be >-2 and (0. 

of 

(b) 

2. If t = 0 is an endpoint of L and the right hand endpoint 

of L belongs to (0, 2) then S = 1 o r  -1 and -1 < S 1  < 1 for any 
L 1 .  A similar situation occurs if the left hand eqdpoint of L 

lies in (0, 2) and the right hand endpoint is at t = 2, but here 

L, L8 are taken to have a common right hand endpoint. 

3 .  If L stretches from t = 0 to t = 2 then S = 0 and 

-1 < S t  < 1 for any L1 having an endpoint in common with L. 

3 
indicated by level lines through the graph. The only acceptable 

sequence of intervals consists of the single interval P1 of type 

P1 which is indicated in the figure. 

using the results of the first four theorems. Fig. 7 shows the 
resulting extrema1 control ui( t ) , 

The graph in Fig. 6 shows all possible intervals of type P 

This is clear by inspection, 

CONCLUSIONS 

Necessary conditions leading to a method for the determination 

of bounded control amplitude and bounded amplitude rate time 

optimal control trajectories by backing out of the origin were 

developed. It can thus be said the theory of bounded rate 

optimal control has been brought t o  the same stage of development 

as the theory of optimal control without rate o r  phase bounds. 
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Figure 1. Construction of Admissible Varied Control to Prove  i?. Extrema1 
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MINIMUM AMPLITUDE 

Figure 2. Construction of Admissible Control in  Proof of Necessary 
Conditions for  PI  Intervals 
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Figure 3. The Function @. (t), Indicating Intervals of Monotonicity 
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Figure 4. The Inverse Functions to (Qi) of Qi 
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THESE LINES 
ARE IDENTICAL 
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THESE LINES 
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Figure  5. Final Form of the Functions 
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NOTE: BROKEN L I N E S  ARE ACTUALLY A T  THE SAME L E V E L  A S  ADJACENT SOLID L I N E S  

Figure 6. A l l  Possible P3 Intervals for the Function @(t) = sin ( '2 t ) 
On the Interval [O, 2 1  
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Figure 7. Extrema1 Control Constructed Using Results Shown 
on Figure 6 
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